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ABSTRACT

The purpose of this paper is to describe comparisons of predictions from an

aeroelastic analysis with test data for a model X-Wing rotor to demonstrate the

applicability of the analysis to the X-Wing. The analysis is the Rotorcraft Dy-

namics Analysis (RDYNE), developed by Sikorsky Aircraft, which was modified to

incorporate Circulation Control airfoil aerodynamics and a pneumodynamic analysis,

developed by the David Taylor Naval Ship Research and Development Center (DTNSRDC).

Test data were derived from a representative X-Wing with a I0 ft diameter rotor

tested in the Boeing-Vertol Wind Tunnel. A small number of comparisons were also

made with data for a 25 ft diameter X-Wing rotor tested in the NASA Ames 40 x 80 ft

Wind Tunnel. Several flight regimes were investigated, including hover, transition,

and conversion to a fixed wing mode of flight. The comparisons indicate that the

analysis is able to give satisfactory predictions of X-Wing behavior. Basic control

power effects and the effects of Higher Harmonic Control on vibratory bending

moments are predicted accurately. Forward flight vibratory flatwise bending moment

and push rod load comparisons were as good as comparisons for conventional rotors.

The analysis is able to accurately represent vibratory and steady responses in rotor

thrust, blade bending moments, and hub rolling and pitching moments for conversion

to a fixed wing flight mode. Refinements which were identified as leading to sig-

nificant improvements were variable rotor induced flow and acoustic pressure wave

delay in the pneumodynamic model.

INTRODUCTION

The X-Wing vehicle is an aircraft which utilizes a rotor to take off (and land)

as a helicopter. The aircraft transitions to forward flight and converts to a fixed

wing flight mode at a high subsonic flight condition, with the rotor first slowed

and then stopped as a fixed wing with an X-planform. Advances in several techno-

logies make more practical the realization of the concept, which has evolved to

*Work performed under a NASA contract for the RSRA/X-Wing. Presented at Circulation

Control W_0rkshop, NASA Ames Research Center, Moffett Field, California,

February 19-21, 1986.
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where NASA awarded Sikorsky Aircraft a contract in December 1983 to design, build,

and test an X-Wing on the Rotor Systems Research Aircraft (RSRA). The Circulation

Control Rotor (CCR) is a key technological solution incorporated in the X-Wing

enabling the rotor to behave satisfactorily at high advance ratios and stopped

conditions. Jets of air are ejected from slots at leading and trailing edges of the

aerodynamically smooth airfoil section to achieve lift augmentation and cyclic

control of lift, as well as vibration reduction through Higher Harmonic Control

(_C).

Prior to the Sikorsky contract, small scale and full scale tests were conducted

with three models to verify the X-Wing concept and to acquire data (Reader, 1984).

Data were obtained on a 6.7 ft. diameter Reverse Blowing Circulation Control Rotor

(RBCCR), a Lockheed 25 ft. diameter X-Wing rotor, and a Boeing-Vertol I0 ft. dia-

meter X-Wing rotor. To support the design of the RSRA/X-Wing, Sikorsky modified the

Rotorcraft Dynamics Analysis (RDYNE) to model the pneumodynamic and aerodynamic

behavior of CCRs, and this was followed by studies to validate the analysis. Com-

parisons were made with the Boeing-Vertol and Lockheed test data to study the

ability of the analysis to predict basic phenomena, consisting of control power

relationships, the effects of HHC, and the vibratory response of the rotor in

forward flight and conversion to a fixed wing mode. The purpose of the paper is to

describe the performance of the RDYNE aeroelastic analysis by comparing predictions

from analysis with results from test data in X-Wing regimes of flight.

Acknowledgements are due to Robert H. Blackwell, Sikorsky, and Kenneth

R. Reader, DTNSRDC, for their contributions.

AEROELASTIC METHODOLOGY

The methodology utilized to predict the aeroelastic behavior of the X-Wing

rotor is the Rotorcraft Dynamics Analysis (RDYNE), developed by Sikorsky Aircraft.

This is an analysis which integrates the equations of motion for a dynamical system

with respect to time (Sopher and Hallock, 1986). The software is segregated along

component lines. Components consist of distinct types of dynamical substructures,

aerodynamic representations, trim solutions, and processing capabilities such as

table specification and plot variable selection components. The components selected

for the application of the analysis to predict the aeroelastic responses of X-Wing

rotors were the following:

i) The elastic blade is based on a set of coupled flatwise, edgewise, and

torsion equations (Arcidiacono, 1969). Blade mass and stiffness proper-

ties are used to calculate uncoupled bending and torsion normal modes, and

blade displacements are expressed in terms of these modes to reduce the

basis of the blade equations to normal modes coordinates.

2) The section aerodynamic component was developed by the David Taylor Naval

Ship Research and Development Center (DTNSRDC) and yields the blade

element characteristics of Circulation Control (CC) airfoils for specified

values of blowing momentum coefficient, angle-of-attack, and Mach number.

Incorporated with this component is a pneumodynamic analysis which calcu-

lates blade duct pressures and temperatures, for specified plenum pressure

ratios, and allowing for losses and centrifugal pumping in the duct.
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3)

There is also a module for calculating the slot deflection height of the

flexible slot. The slot height is utilized with duct pressure and tem-

perature to calculate jet velocity and mass flow through the slot, and jet

momentum coefficient, which in turn are used to obtain from a set of

tables established from tests on CC airfoils the values of CL, C D and C' m

applicable to the airfoil state. The effects of acoustic pressure wave

delay are represented in RDYNE by calculating the pressure at an orifice

at a specified radial station from the pressure at a valve opening in the

plenum at an earlier time, by accounting for the time taken for the wave

to travel between these points.

The data were derived from tests on two types of CC airfoils consisting of

20% thickness ratio dual slotted cambered airfoil and a 15% thickness

ratio uncambered dual slotted airfoil. The 20% thickness ratio airfoil

was subsequently used at the root of the Boeing-Vertol X-Wing rotor and

the 15% airfoil was used at the tip of the rotor, with intermediate

sections obtained from straight line generators extended between root and

tip.

Rotor induced variable inflow is represented by a procedure which utilizes

geometric influence coefficients relating rotor blade circulations to

induced velocity, which are calculated by a program external to RDYNE and

then transmitted to RDYNE for calculation of the inflow. The geometric

influence coefficients are based on the analysis of Landgrebe and Egolf

(1976) and are functions of advance ratio and the angle (CHI) assumed

between the rotor wake and rotor tip path plane. This angle may be

calculated from momentum inflow considerations or may be input to reflect

an empirical or arbitrary wake inclination. An iterative procedure is

used in RDYNE to ensure that rotor blade circulations, motions, and rotor

induced inflow are consistent with each other in the final vibratory state

used for the predictions.

DESCRIPTION OF TESTS AND ASSUMPTIONS IN

ANALYSIS APPLICATIONS

The objective of the Boeing-Vertol test was to obtain data from the model of an

aircraft with a representative X-Wing rotor, for several flight regimes including

hover, transition (i0 to i00 kn), and high speed rotary wing flight to 200 kn.

Fundamental effects of blowing inputs on steady hub moments and vibratory bending

and pushrod loads (torsion moments) were studied, including the effects of HHC

blowing.

The test was conducted in the Boeing-Vertol Wind Tunnel (BVWT) which has a 20 x

20 foot working section and a conventional closed circuit. The 10 foot diameter

rotor is described in table i. The circulation control airfoils have an aero-

dynamically smooth contour achieved by means of flexible slots at leading and trail-

ing edges. Leading edge or combined leading edge and trailing edge (dual) blowing

is achieved by a blowing system consisting of a plenum to which air is supplied by a
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TABLE 1 - BOEING-VERTOL MODEL X-WING ROTOR

• Rotor

- Diameter

- Tip Speed (_R)

- Taper ratio

- Solidity
- Airfoil

- Slots

- Twist

= 10ft

= 600 ft/sec

= 0.5

= 0.159

= 20% t/c at root

15% t/c at tip

= Dual openings vary with pressure

= 0 degrees

• Control system

- Pneumodynamic control of leading and trialing edge

blowing and

• Mean

• 1-5 per rev harmonics

- Mechanical collective

compressor. The plenum is connected through ducting to leading and trailing edge
slots in the blade. Sixteen throttling valves in the nonrotating system control the

mean and cyclic variations of trailing edge pressure supplied to the slots, up to
the fifth harmonic. Nine valves control the pressure in the leading edge.

The typical rotor loading in comparisons of theory and test in hover was

CT/Sigma of .074 at a tip speed of 602 feet per second and a plenum pressure of 14

psig. The RDYNE analysis was run with measured control angles and pressures select-
ed from a station between the 20 to 25 percent radial positions to define input

variables for the control power comparisons in hover. Bending moment responses to

these inputs were measured at the 29 percent radial position in hover.

To determine the potential of the analysis to predict reductions in vibrations

induced by cyclic blowing, comparisons were made of the effects of blowing harmonic

excitation (IP to 5P) on the 1/2 peak-to-peak flatwise vibratory bending moment in

hover. Flatwise bending moments were compared at the 17 percent radial station, and

harmonic pressures were measured at the 25 percent station. In the analysis appli-

cation, the rotor speed was held at 750 rpm and the harmonic number, n, was varied

from 1 to 5. Test data were measured at several different RPMs and harmonic

numbers. The normalized frequency used for comparing the results is defined as

n.(RPM/60).(I/f) where f is the ratio of flatwise frequency at a specified RPM used

in the test or analysis to the flatwise frequency at zero RPM. The nonrotating

flatwise natural frequency of the blade is 35 hz.

Comparisons were made in the transition flight regime of i0 to i00 knots to

evaluate the ability of the analysis to predict steady rotor lift, torque, and hub

rolling and pitching moments. Conditions selected were 20 through 60 knots with
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single trailing edge blowing and a plenum pressure of 17 psig. The analysis was run

with fixed control angles from the test data and with variable inflow. Three sets

of analytical cases were specified to determine the effect of the rotor wake inflow

angle (CHI) on correlation of hub steady pitching moment with airspeed. The CHI

angle is defined as the uniform inflow (determined by the lift, shaft angle, air-

speed and tip speed) divided by the forward airspeed. The theoretical uniform

inflow downwash angle and values of this angle reduced to 0.75 and 0.5 of the

uniform angle value were specified to study the sensitivities of the predicted

results to CHI.

For the comparisons of vibratory loads in forward flight, the tip speed was 602

feet per second, the plenum pressure 14 psig, the rotor loading (CT/Sigma) was .074

and the airfoil had single trailing edge blowing. The analysis was run with speci-

fied test control angles, blade pressures from test at 23 percent span, and variable

inflow. For all cases the bending moments were compared at the 29 percent blade

station.

All analytical cases for the Boeing-Vertol rotor were run with two flatwise,

one edgewise and one torsion mode. Figure I is a calculated frequency diagram for

the blade modes.
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Figure i = Frequency Diagram for MOdes for Boeing-Vertol Blade

The Lockheed rotor is a dua] slotted 25 ft diameter X-Wing rotor which was

tested in the NASA Ames 40 x 80 ft Wing Tunnel during the spring of 1979, for flight

conditions including conversion, where the rotor was slowed from 90% NR (372 RPM) to

a stopped condition at 180 kn. Figure 2 is a frequency diagram for the blade modes

for the Lockheed blade.
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The RDYNE analysis was run using uniform inflow to simulate a test conversion.

The control angl/s were fixed at the values measured at the start of the run. The

analysis used two flatwise modes and one edgewise mode and varied the blade modal

frequencies as functions of rotor speed but used the same mode shapes throughout

conversion. The blade torsion mode was omitted to enable the analysis to be run

with a large time integration interval. This was felt to be justified based on the

very high torsional stiffness and frequency of the Lockheed blade (torsion frequency

was on the order of 20P). The test run was made under closed loop hub moment

control which continuously adjusted the rotor steady hub moments to zero values.

The analysis did not have a feedback hub moment control. Conversion to a stopped

rotor condition was performed with blade dual blowing, a plenum pressure of 8.8

psig, 2 degrees shaft angle, and -5 degrees collective (Run 43, point 9).

All comparisons discussed below apply to the Boeing-Vertol X-Wing rotor, Unless

stated otherwise.

CONTROL ROWER AND HIGHER HARMONIC CONTROL IN HOVER

A basic test of the analysis is its ability to predict the effects of once per

rev (IP) blowing on hub trimming moments. Figure 3, which shows steady hub moment

versus IP blowing amplitude, demonstrates that the combination of an aeroelastic

blade, rotor induced variable inflow, and acoustic pressure wave delay between the

pressure source in the plenum and the blade orifices, succeeds in bringing the RDYNE
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analysis into good agreement with Boeing-Vertol test data. Figures 4 and 5 illu-

strate the agreement in the blade flatwise bending moment time histories and the

harmonically analyzed bending moments. Interestingly, the IP flatwise blade moment

agrees exactly with thetest data while the steady hub moment shows the analysis to

overpredict the response by approximately twenty percent. This may "indicate a

slight discrepancy in the test data, since the steady hub moment is only generated

from Zhe IP blade flatwise bending moment.
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Figures 6 and 7 demonstrate that the analysis is able to predict the effects on

vibratory bending moments of Higher Harmonic Control of blowing. Variable inflow

enables the amplitude to be predicted to within 20 to 30 percent and phase to be

predicted almost exactly. Through blade resonance the phase of the response changes

270 degrees instead of the typical 180 degree phase shift associated with a single

degree of freedom system. This was demonstrated analytically to be the effect of

the acoustic pressure wave delay. Without this wave delay incorporated into the

RDYNE analysis, the predicted phase shift approximated 180 degrees (figure 8).
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TRANSITION FLIGHT

The RDYNE analysis satisfactorily predicts rotor lift (figure 9) and torque

(figure I0) in the transition flight region, where the X-Wing has to achieve steady

level flight. The CHI angle had little effect on the prediction of rotor lift and

rotor torque, but clearly demonstrates that the prediction of the hub steady pitch-

ing moment is controlled by the selection of CHI (figure ii). The results showed

that good agreement in steady hub pitching moment was obtained by reducing the

empirical CHI angle as the airspeed is increased. This reduction brings the rotor

wake vertically closer to the rotor, and causes an increase in the downwash in the

rear portion of the disc. This in turn increased the hub pitching moment in the

nose up direction.
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VIBRATORY LOADS AT FORWARD SPEED

Many of the comparisons of predicted vibratory loads are as good as comparisons

for conventional rotors, and in some cases are better, indicating that a credible

tool has been developed for predicting the vibratory loads on X-Wing rotors.

Figures 12 and 13 show the test and predicted blade flatwise bending moment
versus blade azimuth at i00 and 120 knots. The overall 1/2 peak-to-peak response

agreement is good and in general the time history agreement is fair. At 150 knots

(figures 14 and 15) the 1/2 peak-to-peak response agreement is still good and at the

same time significant improvement in the predicted harmonics occurred. The bar

charts in figure 15 clearly illustrate the excellent prediction achieved at 150

knots with variable inflow. The chart shows steady, vibratory and the first five

harmonics of blade flatwise moment. The vibratory and harmonic bending moments

matched almost exactly, while the steady prediction is poor. However, this 40

percent underprediction of steady moment may not represent poor predictive ability

since the prediction of rotor lift was within ten percent of the measured value. In

general, it is normal for measurement of steady blade bending moments to be less

reliable than the vibratory moments. Also shown on the bar chart is the RDYNE

prediction using uniform inflow. At this airspeed the prediction of vibratory load

and all the harmonics improves with incorporation of variable inflow.
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At the same flight condition of 150 knots, similar time history plots and bar

charts are shown for edgewise blade bending moments and push rod loads. Again, both

uniform and variable inflow results are shown for comparison. Figures 16 and 17

show that the agreement is quite good. The bar chart demonstrates that the variable

inflow compared to the uniform inflow significantly improves the prediction of the

vibratory load and all the harmonics of blade edgewise response. In general this

edgewise comparison of harmonics is better than a majority of comparisons for

conventional rotors.
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Figures 18 and 19 show the push rod comparison (derived from the torsional

response of the blade). Again, agreement in the time history response and bar chart

depicting harmonics of load is quite good. The comparison of variable and uniform

inflow shows that both inflows yield good predictions of vibratory and IP push rod

load, with variable inflow improving the prediction of the higher harmonics.
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For the above conditions, figures 20 to 22 compare the variation of vibratory

blade flatwise bending moments, edgewise bending moments, and vibratory push rod

loads with increasing airspeed• Very close agreement was obtained by the RDYNE

analysis with variable inflow for the vibratory (1/2 peak to peak) blade flatwise

bending moment and the vibratory push rod load. For the edgewise moment, the

analysis underpredicts the vibratory component by 50 to 75 percent. In general, the

correlation of vibratory flatwise and push rod loads is as good as results obtained

for conventional rotors (Arcidiacono and Sopher, 1982; Jepson et al, 1983).
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RESPONSES IN CONVERSION

The ability of the RDYNE analysis to predict vibratory blade loads and vibra-

tory hub forces and moments during conversion is important to the design of an

X-Wing rotor system. The vibratory levels will be the highest that the rotor will

experience because the stopping of the rotor is done at high speed. The rotor

system will experience the unique condition of being excited by airloads while the

blade bending modes pass through resonance. This is a condition that conventional

rotors are designed to avoid to minimize blade and hub loads.

Overall, the agreement in vibratory levels (figures 23 and 24) is good. The

predicted thrust shows the same trend in mean values with decreasing rotor speed

as the test data. Also the prediction of the mean thrust shows good agreement•

The predicted maximum vibratory thrust occurs at approximately the same rotor speed

as the test data but its level is underpredicted by 50 percent. The blade flatwise

vibratory and steady levels show good agreement but the agreement in rotor speed at

the point of maximum blade response cannot be clearly defined since the predicted

moment does not show any distinct peaks. These peaks are clearly evident in the

time histories of the hub roll and pitch moments for both the test data and the

analysis. The predicted peaks are at a lower rotor speed (later time) than the test

data. The predicted flatwise blade natural frequency versus rotor speed shown in

figure 2 indicates that the test peaks occur at exactly the rotor speed for which
the blade mode crosses a harmonic of rotor RPM. However, the analysis shows that

the maximum response occurs just after passing through a harmonic of rotor speed

(approximately 0.5 second lag) which is typical for a dynamic system being excited

by a force with a decreasing frequency. The predicted increase in steady hub roll

moment as the rotor slows down was expected due to the lack of an analytical closed

loop hub moment control. The predictions of the maximum hub vibratory moments were

in close agreement for the pitch direction and showed a slight underprediction for

the roll direction.
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CONCLUSIONS

The RDYNE analysis was used to predict the aeroelastic responses of a repre-

sentative X-Wing model with a I0 ft diameter rotor tested in the Boeing-Vertol

Wind Tunnel. A small number of predictions were also made for a Lockheed X-Wing

with a 25 ft diameter rotor tested in the NASA Ames 40 x 80 ft Wind Tunnel. Com-

parisons with test results indicate that the analysis is able to give satisfactory

predictions of aeroelastic responses in X-Wing flight regimes.

For the Boeing-Vertol model, basic control power effects relating first har-

monic blowing control inputs to steady hub loads, analogous to control relationships

for mechanically controlled rotors, are predicted accurately in hover. The analysis

is able to accurately predict the effects of higher harmonic blowing on blade

bending moments, and shows potential for enabling rotors to be designed for reduced

vibrations. Forward flight vibratory bending moments showed fairly good agreement

with test data, and were as good as comparisons for conventional rotors. The

comparisons of vibratory flatwise and push rod loads were better than results

obtained for conventional rotors.

Good agreement between analysis and test was achieved for the Lockheed rotor in

conversion flight for variations with time of rotor thrust, blade flatwise bending

moment, and hub rolling and pitching moments at 180 knots with the rotor slowed from

90% NR to a stopped condition. The correlations establish the ability of the

analysis to represent vibratory and steady responses for a mode of flight which is

important to the design of the X-Wing.
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Refinements which were identified as leading to significant improvements were
variable rotor induced flow and acoustic pressure wave delays in the pneumodynamic

model. Variable inflow improved the predictions of vibratory loads in forward

flight and the amplitudes of vibratory bending moment responses to higher harmonic

blowing in hover. Acoustic pressure wave delays significantly improved the pre-

dicted phase responses of blade bending moments to higher harmonic blowing in hover.
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